

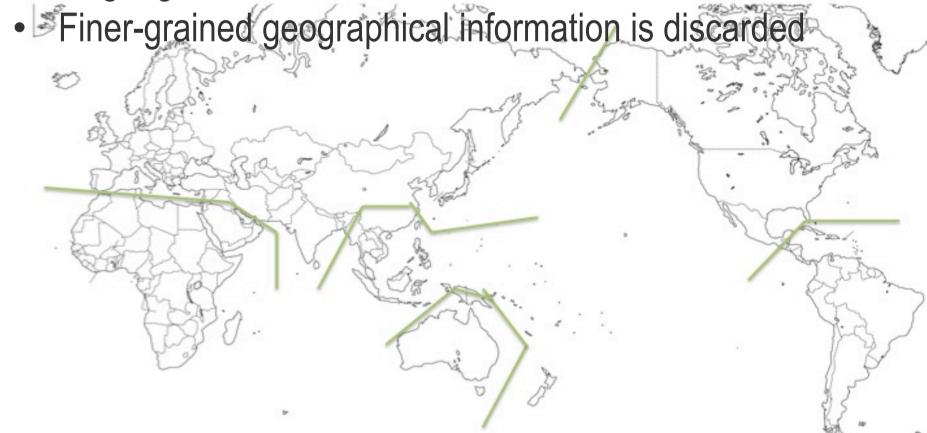
Autologistic Regression in Linguistic Typology

Yoshihiko Asao yoshihik@buffalo.edu

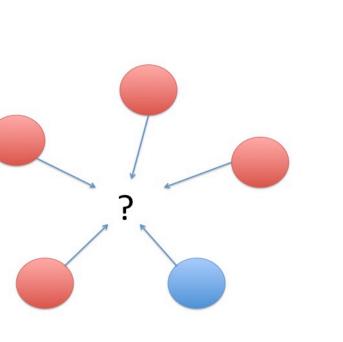
Introduction

- A typological frequency difference is often taken as a linguistic preference and given linguistic explanations
- However, there are often large-scale geographical patterns
- It is difficult to distinguish a true linguistic preference from a historical accident

Previous Approaches


Independent sample approach (Perkins 1989, among others)

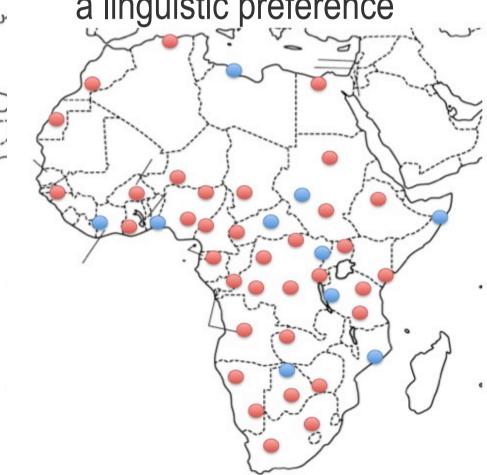
Needs to discard most of the data


Language area approach (Dryer 1989, 1992, Bickel 2008)

- Arbitrariness and potential interdependence between language areas

Autologistic Regression

- Similar to the logistic regression in Bickel (2008)
- Instead of language areas, the opinions from neighbors are a part of the model
- Inspired by discussions on similar issues in ecology (Dormann 2007)



Autologistic Regression (cont.)

 Key idea: if most variance is explained away as the retention of the features of related languages, the evidence for the universal linguistic preference is weak.

More predictable from neighbors: The pattern can be explained by a few historical accident

Less predictable from neighbors: Spontaneous change is frequent, suggesting the frequency difference is more likely to be a linguistic preference

Example (Order of relative clause and noun)

English		Japanese			
Five closest languages		Five closest languages			
	Welsh	NRel		Ainu	RelN
	Romani	NRel		Korean	RelN
	(Welsh)	141101		Dagur	RelN
	Frisian	NRel		Nivkh	RelN
	Cornish	NRel		Seediq	NRel
	Dutch	NRel	;	# of NRel	1
7	# of NRel	5		z-score	-1.840
	z-score	0.593			
	Wo	orld average			

 $N/Rel = \alpha + \beta N + \epsilon$

log odds of getting NRel word order in the target language

Effect of neighbors

Procedure

- Data values and geographical distances are taken from WALS chapters (Dryer and Haspelmath 2011)
- Find the best model using stepwise regressions with AIC

Results

Examples from Phonology CLICK

	AIC	pR ²
Click ~ I	90.6	
★ Click ~ Neighbor	28.7	72.1%
Al	C = Akaike In	formation Criteria
pR ² = McFadden's pseudo-R squared		

TH-SOUND (non-sibilant dental or alveolar fricative)

	AIC	pR ²
Th-sound ~ I	306.5	
★ Th-sound ~ Neighbor	303.5	1.6%

- Although both click sounds and th-sounds are typologically rare features, the former is much more predictable from neighboring languages
- The rarity of th-sound is more likely to reflect a universal preference

Example from Syntax N/Rel (Order of relative clause and noun)

		AIC	pR ²
	N/Rel ~ I	714.6	
*	N/Rel ~ Neighbor	325.6	54.3%

Discussion

- Lack of random sampling: the use of parametric statistics may not be appropriate
- The model lacks the distinction between geographical and genealogical factors
- Autologistic regression is not without criticism (Dormann 2007)

Results: Implicational Universals NRel if VO NRel RelN VO Correlation of **Dominance of NRel** N/Rel and V/O World average interaction (Dominance of NRel) N/Rel = $\alpha + \beta_1 V/O + \beta_2 N + \beta_3 (V/O*N) + \epsilon$

Effect of neighbors Effect of basic word order

(Correation of N/Rel and V/O)

	AIC	pR ²
N/Rel ~ I	678.9	
N/Rel ~ Neighbor	322.7	52.9%
N/Rel ~ VO	396.4	42.0%
★ N/Rel ~ Neighbor + VO	254.9	63.2%
N/Rel ~ Neighbor + VO + neighbor*VO	256.4	63.3%

Conclusion

Autologistic regression may be a useful method to discern a true linguistic preference from a historical accident

References

- Bickel (2008) A general method for the statistical evaluation of typological distributions. Draft.
- Dormann (2007) Assessing the validity of autologistic regression. *Ecological* Modelling 207, 234-242.
- Dryer (1989) Large linguistic areas and language sampling. Studies in Language 13: 2, 257-292.
- Dryer (1992) Greenbergian word order correlations. Language 68: 1, 81-138.
- Dryer and Haspelmath (2011) World Atlas of Language Structures Online. Perkins (1989) Statistical techniques for determining language sample size. Studies in Language 13: 2, 293-315.